Using consensus molecular docking for the discovery of Wee1 inhibitors in the context of cancer

Jochem Nelen¹, Miguel Carmena-Bargueño¹, Carlos Martínez-Cortés¹, Alejandro Rodríguez-Martínez², Jose Manuel Villalgordo-Soto³ and Horacio Pérez-Sánchez¹

- ¹ Structural Bioinformatics and High Performance Computing Research Group (BIO-HPC), Computer Engineering Department, UCAM Universidad Católica de Murcia, Murcia, Spain
- ² Departamento de Química Física, Instituto de Biotecnología y Unidad de Excelencia de Química aplicada a Biomedicina y
- Medioambiente Universidad de Granada. Campus Fuentenueva s/n 18071 Granada, Spain
- ³ Eurofins Villapharma Research, Murcia, Spain

Abstract

- Structural drug discovery methods such as molecular docking can have quite variable results
- Consensus docking can lower this variability, leading to less false positives
- In this study, consensus docking was successfully utilized to perform a virtual screening of the DrugBank library for Wee1

Wee1

- Important regulator during cell division checkpoint
- Target for inhibition as a cancer treatment
- Case study target for the consensus docking approach

Consensus of predicted binding poses

- DB03373
- RMSD ~ 6,5 Å
- Bad consensus
- Lower confidence result

- DB07006
- RMSD ~ 0,5 Å
- Good consensus
- Higher Confidence result

Consensus Script Output

	GLU303	ILE305	SER307	ER307 GLU309 PHE310		VAL313
DB11847_AD	0	1	0 0 1		0	
DB11847_LF	0	2	2	0 1		2
DB12892_AD	0	2	0	0	1	1
DB12892_LF	0	1	0	0	0	1
DB12678_AD	0	2	0	0 0 2		2
DB12678_LF	0	0	0	0	1	2

Mixed Rank	Ligand Name	Mean Binding Energy	Mean Rank	RMSD	AD Rank	AD Binding Energy	LF Rank	LF Binding energy
CL_1	DB11847	-11.705	49	1.2369	78	-10.9	20	-12.51
CL_2	DB12892	-11.645	93.5	4.26647	179	-10.64	8	-12.65
CL_3	DB12678	-11.555	43.5	7.75356	32	-11.1	55	-12.01
CL_4	DB15426	-11.485	52	10.502	19	-11.15	85	-11.82

Conclusions

- As demonstrated here for Wee1, using RMSD as a consensus metric can be used to enrich for higher confidence results
- Using this workflow, additional useful information like predicted residue interactions can be generated
- Workflow of postprocessing after MetaScreener is still in development, but already used extensively in-house

Acknowledgments and Funding

J.N. holds a PhD fellowship at UCAM funded by Cátedra Eurofins VillaPharma.

References

- (1) DrugBank: https://doi.org/10.1093/nar/gkx1037
- (2) AutoDock Vina: https://doi.org/10.1002/jcc.21334
- (3) LeadFinder: https://doi.org/10.1021/ci800166p
- (4) MetaScreener: https://github.com/bio-hpc/metascreener

Contact: jnelen@ucam.edu

