

## TOLEDO: a new software that is able to run and analyze Desmond Molecular Dynamics simulations using parallel programming

Miguel Carmena-Bargueño, Carlos Martínez-Cortés, Antonio Jesús Banegas Luna, Horacio Pérez-Sánchez

Universidad Católica de Murcia (UCAM)







# STRUCTURAL BIOINFORMATICS AND HIGH PERFORMANCE COMPUTING (BIO-HPC) RESEARCH GROUP (2022 presentation)

- 300
- 4 research full-time UCAM members, 3 part-time UCAM, 3 external
- 4 Main objectives/pillars
  - Method/tool developments
  - Implementations in supercomputers
  - Web-access to tools
  - Application to pharma/biotech/food contexts
- International collaborations and companies
- Scientific output since 2013
  - More than 140 JCR publications (Q1, Q2)
  - 10 patents filed (3 licensed), 2 patents in process
  - 8 PhD students supervised, 4 PhD in progress
  - 13 competitive research projects as PI (regional, national and international calls)
  - Contracts with companies
  - Several software and web tools developed





#### INTRODUCTION: WHAT IS M

## WHAT IS MOLECULAR DYNAMICS?



More coursely that other

More accuracy that other in silico tools (Docking)

#### **PROBLEM:**

# COMPLEXITY OF RUN MDs TO NON-EXPERT USERS



High perfomance was obtained using rCUDA and Gromacs by our group (BIO-HPC)

**Table 1.** Performance achieved by several GROMACS configurations.

| Configuration                           | Label | Performance<br>(ns/day) |
|-----------------------------------------|-------|-------------------------|
| CPU 20 threads                          | Α     | 121.33                  |
| CPU 3 threads                           | В     | 22.59                   |
| CUDA 10 threads                         | C     | 305.46                  |
| rCUDA 2 nodes: eight 3-thread instances | D     | 542.53                  |
| rCUDA I node: five 3-thread instances   | E     | 452.64                  |

rCUDA: remote CUDA; GROMACS: GROningen MAchine for Chemical Simulations.

-GROMACS needs expert users to be configured -High number of parameters

```
; Output frequency for coords (x), velocities (v) and forces (f)
63
                              = 0
                              = 0
     ; Output frequency for energies to log file and energy file
                              = 1000
                              = 1000
     nstcalcenergy
                              = 1000
     nstenergy
     ; Output frequency and precision for .xtc file
     nstxout-compressed
                              = 100
     compressed-x-precision = 1000
     ; This selects the subset of atoms for the compressed
    ; trajectory file. You can select multiple groups. By
    ; default, all atoms will be written.
    compressed-x-grps
                              = Protein
     ; Selection of energy groups
     energygrps
78
     ; NEIGHBORSEARCHING PARAMETERS
     ; cut-off scheme (Verlet: particle based cut-offs, group: using charge groups)
                              = Verlet
     ; nblist update frequency
                              = 10
     ; Periodic boundary conditions: xyz, no, xy
                              = xyz
     periodic-molecules
     ; Allowed energy error due to the Verlet buffer in kJ/mol/ps per atom,
     ; a value of -1 means: use rlist
     verlet-buffer-tolerance = 0.005
     ; nblist cut-off
91
                              = 1
     ; long-range cut-off for switched potentials
     ; OPTIONS FOR ELECTROSTATICS AND VDW
     ; Method for doing electrostatics
     coulombtype
                              = Potential-shift-Verlet
      coulomb-modifier
     rcoulomb-switch
                              = 0
     rcoulomb
                              = 1.0
     ; Relative dielectric constant for the medium and the reaction field
     ; Method for doing Van der Waals
     vdw-type
                              = Cut-off
     vdw-modifier
                              = Potential-shift
     ; cut-off lengths
     rvdw-switch
                              = 0
                              = 1.0
108
     ; Apply long range dispersion corrections for Energy and Pressure
```

#### **SOLUTION:**

### **RUN MD USING TOLEDO**





## **CASE STUDIES**



#### **DOCKING RESULTS OBTAINED BY**



# (https://bio-hpc.ucam.edu/achilles/)





### **CASE STUDIES**

#### **DOCKING RESULTS OBTAINED BY**

Virtual Screening Poster 22 (https://github.com/bio-hpc/metascreener)



Blind Docking (https://bio-hpc.ucam.edu/achilles/)



Please if you can run MDs please contact with us:

Miguel Carmena-Bargueño: mcarmena@ucam.edu

Horacio Pérez-Sánchez: hperez@ucam.edu







# Acknowledgments





















Agencia de Ciencia y Tecnología Región de Murcia







MINISTERIO DE CIENCIA, INNOVACIÓN Y UNIVERSIDADES



